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Abstract
Medical Large Vision-Language Models (Med-
LVLMs) often exhibit suboptimal attention dis-
tribution on visual inputs, leading to halluci-
nated or inaccurate outputs. Existing mitiga-
tion methods primarily rely on inference-time
interventions, which are limited in attention
adaptation or require additional supervision.
To address this, we propose A3TUNE, a novel
fine-tuning framework for Automatic Attention
Alignment Tuning. A3TUNE leverages zero-
shot weak labels from SAM, refines them into
prompt-aware labels using BioMedCLIP, and
then selectively modifies visually-critical atten-
tion heads to improve alignment while mini-
mizing interference. Additionally, we intro-
duce a A3MOE module, enabling adaptive pa-
rameter selection for attention tuning across
diverse prompts and images. Extensive experi-
ments on medical VQA and report generation
benchmarks show that A3TUNE outperforms
state-of-the-art baselines, achieving enhanced
attention distributions and performance in Med-
LVLMs.1

1 Introduction

While medical Large Vision-Language Models
(Med-LVLMs) have shown significant progress in
the medical domain (Li et al., 2024; Chen et al.,
2024d; Thawkar et al., 2023; Moor et al., 2023),
they often produce inaccurate or hallucinated out-
puts that deviate from the provided visual medical
information, as revealed by recent benchmarks (Xia
et al., 2024; Gu et al., 2024; Chen et al., 2024a).
An example of medical visual question answering
(VQA) extracted from the SLAKE (Liu et al., 2021)
dataset is shown in Figure 1(A), where we visual-
ize the average attention map on the image inputs
during generating answers. We can observe that
LLaVA-Med in Figure 1(A.2) generates the hallu-
cinated response “Alzheimer’s disease”, neglecting

∗Corresponding authors.
1Source code is available at https://github.com/

Aofei-Chang/A3Tune

the tumor region and over-focusing on irrelevant
background areas, as shown in the corresponding
attention map. This reveals a significant bias in
attention distribution on visual inputs that limits
the model’s effectiveness, which have been iden-
tified in general LVLMs (Gong et al., 2024; Woo
et al., 2024; Liu et al., 2025).

Unfortunately, none of the specified bias miti-
gation strategies have been proposed in the med-
ical domain. In the general domain, research pri-
marily focuses on inference-time interventions to
reduce attention biases, employing two main ap-
proaches. The first approach, contrastive decod-
ing (Leng et al., 2024; Favero et al., 2024; Liu
et al., 2025; Woo et al., 2024; Gong et al., 2024),
introduces a contrastive adjustment to the decod-
ing logits. However, this method does not directly
modify the attention distribution, meaning it cannot
guarantee that the model attends to diagnostically
critical regions. The second approach directly mod-
ifies attention maps during inference, as seen in
ControlMLLM (Wu et al., 2024), which enforces
the model to focus on pre-annotated regions of in-
terest (RoIs). However, as shown in Figure1(A.3),
this method still generates partially hallucinated
content. Besides, it requires additional tuning and
ground truth RoIs for each inference process, mak-
ing it impractical for real-world applications.

To overcome the limitations of inference-time in-
tervention, an ideal solution is to automatically ad-
just attention maps towards RoIs during fine-tuning
for downstream medical tasks. This approach en-
ables the model to place more attention on critical
regions during inference, eliminating the need for
additional labels or interventions. However, imple-
menting such a method poses several challenges:

(1) Limited availability of medical segmen-
tation labels. As shown in Figure 1(A.3), using
segmentation labels (RoIs) as guidance, as done in
ControlMLLM, can enhance the learning of accu-
rate attention maps and answer correctness. How-

https://github.com/Aofei-Chang/A3Tune
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Generated answer: “The 
image includes a section of 
a pituitary adenoma, which 
is a type of brain tumor.”

Generated answer: “The 
picture includes a section of a 
standard MRI brain template 
for Alzheimer's disease.”

Prompt: What disease is included in the medical image?

A.2 LLaVA-Med A.3 LLaVA-Med +
ControlMLLMA.1 Input Image

Ground truth: 
“A brain tumor in the 
upper left region.”

Prompt Ground Truth Segments

(2) Where is the
spleen located?

(1) Does the
picture contain
liver?

(A) (B)

Figure 1: (A) Examples of medical VQA and attention maps on medical images. In this example of Brain MRI
from the SLAKE dataset, red box denotes the RoI of the brain tumor that LLaVA-Med should focus on. Red texts
and green texts indicate wrong answers and correct answers, respectively. (B) Example of ground truth RoIs for
different prompts on an Abdomen CT from SLAKE.

ever, such labels are often unavailable in medical
datasets.

(2) Trade-off between attention alignment and
model stability. Assuming that RoI labels are
available, directly modifying the attention maps
of all attention heads towards the labels without
any strategy is still risky. This may lead to the
over-alignment issue that potentially impacts the
output stability and overall performance. There-
fore, achieving the right balance between attention
alignment and model stability is essential.

(3) Adapting attention to diverse prompts and
images. Even if attention alignment and model
stability are balanced, the parameter-sharing strat-
egy in fine-tuning remains a limitation for adaptive
attention alignment. For example, as shown in
Figure 1, the optimal RoIs can vary significantly
based on the input prompt and image, requiring
dynamic alignment. While the computation of at-
tention maps adjusts to input representations, the
shared parameters in fine-tuning limit the model’s
ability to flexibly learn attention distribution across
diverse inputs.

To address these challenges simultaneously, we
propose A3TUNE, a novel fine-tuning framework
designed for Automatic Attention Alignment Tun-
ing. As shown in Figure 2, A3TUNE integrates a set
of cooperative strategies to ensure that attention in
Med-LVLMs is well aligned, minimally disruptive,
and highly adaptable across diverse medical tasks.
Firstly, to overcome the lack of segmentation labels
(Challenge 1), A3TUNE utilizes zero-shot segmen-
tation labels generated by SAM (Roy et al., 2023)
and further refines them into prompt-aware weak
labels using BioMedCLIP (Zhang et al., 2023).
These weak labels serve as guidance for attention
alignment, eliminating the need for manual anno-

tations. However, weak labels alone are not suffi-
cient — uncontrolled modifications on all attention
heads can disrupt model stability (Challenge 2). To
further balance attention alignment with model sta-
bility, A3TUNE selectively modifies only the most
“visually-critical” attention heads, minimizing the
risk of over-alignment and instability. Furthermore,
the parameter-sharing strategy in alignment tun-
ing remains a limitation, as RoIs vary significantly
based on the input prompt and image (Challenge 3).
To address this, we incorporate a custom-designed
Mixture-of-Experts A3MOE into A3TUNE on at-
tention modules, allowing the model to dynami-
cally select parameters and adjust attention maps
for different images and prompts.

In summary, this work makes the following con-
tributions: (1) We propose A3TUNE, a novel vi-
sual attention tuning approach that utilizes zero-
shot weak labels to refine the visual focus of Med-
LVLMs and enhance their performance. (2) We
develop a set of designs for cooperative attention
alignment tuning: (i) weak label supervision, (ii)
selective tuning of visually-critical attention heads,
and (iii) a A3MOE module for adaptive attention
adjustment. (3) We conduct extensive experiments
on five medical VQA and two report generation
benchmarks against ten baselines, demonstrating
that A3TUNE outperforms state-of-the-art meth-
ods in both effectiveness and interpretability, im-
proving visual grounding and overall model perfor-
mance.

2 Related Work

While some efforts, such as CoMT (Jiang et al.,
2024), have attempted to reduce hallucinations in
Med-LVLMs for report generation by training on
hierarchical QA pairs derived from real clinical
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(A) Overview of the Proposed A3Tune (B) Details of Visual Attention Alignment Tuning

Figure 2: (A) The overview of A3TUNE and (B) the details of the designed visual attention alignment tuning.

image reports, mitigation strategies specifically de-
signed for Med-LVLMs remain largely underex-
plored. Since Med-LVLMs share the same struc-
ture and training process as general LVLMs, hal-
lucination issues are a common challenge across
both. As a result, many inference-time mitigation
strategies developed for LVLMs are also applica-
ble to Med-LVLMs, including: (1) Enhancing vi-
sual information and mitigating text over-reliance:
VCD (Leng et al., 2024), M3ID (Favero et al.,
2024), PAI (Liu et al., 2025), HELPD (Yuan et al.,
2024), RBD (Liang et al., 2024). (2) Mitigating
visual token attention bias, with approaches such
as AVISC (Woo et al., 2024) and DAMRO (Gong
et al., 2024). (3) Refining and modifying LLM gen-
eration patterns during decoding, OPERA (Huang
et al., 2024), DoLa (Chuang et al., 2023). In ad-
dition, other mitigation methods, such as Truth-
Flow (Wang et al., 2025), leverage trained steering
vectors to guide the model toward more truthful
outputs in LLMs. Despite these advancements, sig-
nificant challenges remain in mitigation attention
biases in Med-LVLMs.

3 Preliminaries

3.1 Background of Med-LVLMs
Med-LVLMs share the same fundamental architec-
ture as general LVLMs (Liu et al., 2024; Chen et al.,
2023), consisting of three primary components: the
Visual Encoder, the Visual Alignment Layer, and
the Large Language Model (LLM). The input im-
age is firstly divided into N patches and processed
by the Visual Encoder, which converts it into a
sequence of visual tokens Tv with embeddings rep-
resented as Xv ∈ RN×dv , where dv denotes the
dimension of the visual hidden representation.

The visual tokens are then projected through the
Visual Alignment Layer into X

′
v ∈ RN×dp , where

dp denotes the dimension of the LLM token space.
These aligned visual tokens are subsequently for-
warded to the LLM along with the embeddings
Xp ∈ RV×dp of the tokenized textual prompts Tp ,
where V is the number of text tokens.

The final objective of the LLM in Med-LVLMs
is to predict the next token yt based on the current
visual input X

′
v , prompt input Xp, and previously

generated tokens y<t, formulated as:

pt = p(yt | X
′
v,Xp, y<t; Θ

∗), (1)

where Θ∗ denotes the parameters of the LLM.

3.2 Visual Attention Map
Most Med-LVLMs adopt a Transformer (Vaswani
et al., 2017) decoder-based LLM, which processes
inputs through L decoder layers, each equipped
with a multi-head attention module. In layer l, the
module includes H attention heads, where each
head h (with 1 ≤ h ≤ H) computes attention sepa-
rately using their corresponding attention map Mlh.
This attention mechanism models relationships be-
tween visual and textual tokens.

To analyze how visual tokens contribute to text
generation, we focus on the attention scores be-
tween visual tokens and subsequent text tokens,
referred to as visual attention map Mv

lh, a subma-
trix of the overall attention map Mlh. To gain a
global understanding of attention distribution on vi-
sual tokens, the averaged visual attention map Mv

can be obtained by aggregating attention across all
heads and layers (Wu et al., 2024):

Mv =
1

LH

L∑
l=1

H∑
h=1

Mv
lh. (2)



4 The Proposed A3TUNE

A3TUNE aims to automatically align attention to
enhance visual grounding and improve the perfor-
mance of Med-LVLMs. The fine-tuning pipeline
is illustrated in Figure 2. Given an input image I
and prompt P , we firstly generate a set of prompt-
aware weak labels S using a zero-shot method (Sec-
tion 4.1). To achieve effective attention alignment
(Section 4.2) with the guidance of S , we first iden-
tify visually-critical attention heads, then integrate
an A3MOE design into each decoder layer to en-
able flexible attention distribution learning.

4.1 Prompt-Aware Weak Labels Generation
Given a medical image I , we first use SAM (Kir-
illov et al., 2023) to generate a set of candidate
segments S∗ following (Yang et al., 2024). How-
ever, using all segments in S∗ for attention tuning
introduces noise, as only a subset is relevant to each
prompt. Therefore, it is necessary to select prompt-
aware segments as weak labels to adaptively guide
attention tuning. To filter prompt-aware weak la-
bels, we embed each segment s ∈ S∗ into a feature
representation Es using BioMedCLIP’s vision en-
coder, while the text prompt P is embedded into
EP using its text encoder. We then select an adap-
tive threshold τK to select K segments that are
most similar to the text prompt based on cosine
similarity (Sim) in the embedding space:

S = {s ∈ S∗ | Sim(Es,EP ) ≥ τK}. (3)

4.2 Visual Attention Alignment Tuning
The goal of visual attention alignment tuning is to
align averaged visual attention map Mv with fixed
weak labels S (i.e., masking regions) via Eq. (3)
during fine-tuning. To achieve this goal, we first
design a new parameter-efficient fine-tuning strat-
egy and select “visually-critical” attention heads to
the alignment of attention maps with S .

4.2.1 A3MOE Design
We build A3TUNE based on a parameter-efficient
fine-tuning technique, LoRA (Hu et al., 2021), and
apply it to all linear modules of the LLM in the
Med-LVLM, including the Query and Key ma-
trices in attention modules. In standard LoRA
fine-tuning, the trainable LoRA parameters ∆Wq

and ∆Wk for Query and Key matrices are shared
across all training instances. However, this static
parameter-sharing strategy in attention is insuffi-
cient for A3TUNE. As shown in the abdominal

Prompt
Attention map learned 
using shared parameters 

Prompt-aware 
weak labels

Where is the 
spleen located?

Does the picture 
contain liver?

Figure 3: Motivation for using A3MOE. The second col-
umn shows prompt-aware weak labels, with red bound-
ing boxes and green inner segments. The third column
shows the attention maps generated using shared param-
eters for the Query and Key matrices.

organ analysis tasks (Figure 3), weak labels S vary
with the prompt, yet attention maps generated with
shared ∆Wq and ∆Wk lack the flexibility to adapt
effectively to different prompts and images.

To address this limitation, we introduce A3MOE,
a Mixture-of-Experts mechanism specifically de-
signed for A3TUNE, with two sub-modules: Q-
MoE and K-MoE, applied to the LoRA parameters
∆W

(l)
q and ∆W

(l)
k in each LLM decoder layer l.

For clarity, we omit the explicit annotation of l in
subsequent equations, as A3MOE is applied con-
sistently across all decoder layers. The following
sections describe these sub-modules in detail.
Q-MoE: Prompt-Level MoE on Query Matrix.
As shown in Figure 3, the target RoIs often depend
on the text prompt, even for the same image. To
handle this, we introduce Q-MoE, a prompt-level
MoE on ∆Wq, consisting of Oq experts. For the
o-th expert (1 ≤ o ≤ Oq), we define Eq

o = BoAo,
where Bo ∈ Rdp×r and Ao ∈ Rr×dp are matrices
with a low rank r.

To dynamically route experts based on the
prompt, we apply a prompt-level gating mecha-
nism that generates router weights α based on the
hidden states of the prompt Hp, which is obtained
at each layer l after processing Xp from the previ-
ous decoder layers. To capture the prompt’s overall
context, Hp is first averaged using a pooling opera-
tion. The routing and parameter computation are
formulated as:

α = softmax(MLP(Pooling(Hp))), (4)

∆Wq =

Oq∑
o=1

αoEq
o , (5)

where α ∈ ROq
represents the router weights,

with each αo determining the contribution of the



corresponding expert Eq
o . MLP denotes the multi-

layer perceptron used in the gating mechanism.
K-MoE: Visual Token-Level Sparse MoE in Key
Matrix. Unlike text prompts, which can be sum-
marized with pooling, visual inputs contain fine-
grained information at the token level, where subtle
differences can indicate abnormalities that require
varied attention. To capture these nuances, we in-
troduce K-MoE, a visual token-level MoE applied
on ∆Wk. K-MoE includes Ok experts, each im-
plemented using LoRA.

For each visual token c, the gating mechanism
dynamically select experts based on its hidden
states Hc

v, and the LoRA parameters ∆Wc
k for

visual token c are computed as:

βc = softmax(MLP(Hc
v)), (6)

∆Wc
k =

Ok∑
o=1

1oβ
c
oEk

o , (7)

where βc ∈ ROk
and 1o is a binary indicator en-

forcing sparsity by retaining only the top-B gating
weights. It is set to 1 if expert Ek

o is among the
top-B most relevant experts, otherwise it is set to
0. This mechanism ensures that for each visual
token, only the most relevant experts contribute,
minimizing interference among visual tokens while
improving efficiency in alignment tuning.

4.2.2 “Visually-Critical” Heads Selection
Each layer l in the LLM decoder fine-tuned with
A3MOE learns H attention heads and the total
number of attention heads is L×H . Among them,
the attention heads that assign higher weights to
visual information are more crucial in processing
visual features. Thus in layer l, the importance
of each head h can be quantified using the visual
attention ratio rlh, which measures the proportion
of attention allocated to visual tokens relative to all
tokens as follows:

rlh =

∑
c∈Tv M

v
lh[c]∑

c′∈Tv∪Tp M
v
lh[c

′ ]
, (8)

where Mv
lh[c] represents the attention score as-

signed by attention head h in layer l to token c.
To refine the visual attention matrix Mv, we

select top-R “visually-critical” heads based on the
visual attention ratios rlh. To achieve this, we use
a binary indicator 1lh to identify and retain only
the most influential attention heads. Specifically, it
is set to 1 if attention head (l, h) is among the R

heads with the highest visual attention ratios and 0
otherwise. The updated visual attention matrix is
then computed as:

M̃v =
1

R

L∑
l=1

H∑
h=1

1lhM
v
lh. (9)

4.2.3 Attention Alignment Function
After obtaining refined M̃v, we define how it is ad-
justed to align with the weak labels S. Intuitively,
in the averaged attention map M̃v, tokens within
the masking regions S should receive higher at-
tention values. Motivated by the cross-attention
control design for image generation in (Chen et al.,
2024c), we use a mask-based energy function to
guide the attention alignment tuning:

Lalign =
∑
s∈S

(
1−

∑
c∈s M̃

v
c∑N

c′=1
M̃v

c′

)2

, (10)

where s represents each referring segment in S, c
and c

′
is the visual token index, and N is the num-

ber of visual tokens. Among all N visual tokens,
this function encourages higher attention on visual
tokens within each s, minimizing the loss and guid-
ing M̃v to effectively focus on the prompt-aware
regions S.

4.3 Final Objective
In the fine-tuning process, we incorporate the loss
of proposed visual attention alignment tuning Lalign
(Eq. 10) as a regularization term for downstream
medical tasks. This term is combined with the
language modeling objective LLLM :

LLLM = −
T∑
t=1

log pt(yt | X
′
v,Xp, y<t; Θ,Θ∗),

(11)
where Θ∗ denotes the frozen parameters of LLM,
Θ denotes the trainable parameters in LoRA and
A3MOE, and y<t denotes the generated tokens be-
fore time step t. The final objective loss is:

L = LLLM + λLalign, (12)

where λ > 0 is a hyperparameter that controls the
strength of attention tuning.

5 Experiments

We evaluate our method on representative Med-
LVLMs, including LLaVA-Med (Li et al., 2024)
and LLaVA-Med-1.5. The experimental results for
LLaVA-Med-1.5 are provided in Appendix G.



Table 1: Performance comparison on medical VQA benchmarks using LLaVA-Med. The best results are highlighted
in bold, and the second-best results are underlined. OmniVQA corresponds to the OmniMedVQA dataset.

Model Method Slake VQA-RAD PathVQA IU-Xray OmniVQA
Open Closed Open Closed Open Closed Closed Closed

LLaVA-Med

LLaVA-Med 41.28 57.75 32.48 68.90 10.34 52.49 72.83 31.79
Greedy 42.81 60.00 35.68 68.11 11.35 52.34 75.00 31.11

Beam (Sutskever et al., 2014) 42.31 61.69 33.57 66.93 9.86 53.79 73.59 30.89
Nucleus (Holtzman et al., 2020) 41.06 61.41 32.64 68.11 9.93 53.17 73.09 30.96

VCD (Leng et al., 2024) 39.76 59.44 33.93 66.54 11.17 53.52 74.36 32.89
DoLa (Chuang et al., 2023) 42.37 59.72 35.68 68.50 11.38 52.55 74.87 31.04

OPERA (Huang et al., 2024) 40.44 60.00 35.54 68.50 9.77 53.17 75.00 31.72
AVISC (Woo et al., 2024) 41.46 59.72 35.43 64.17 11.03 52.20 73.85 32.48
M3ID (Favero et al., 2024) 38.85 60.28 35.31 62.60 9.80 52.93 72.32 31.11

DAMRO (Gong et al., 2024) 41.33 59.72 32.73 66.54 10.80 51.84 72.19 31.45
PAI (Liu et al., 2025) 43.18 60.28 35.10 68.50 11.09 52.46 74.87 32.13

LLaVA-Med
+ LoRA

LLaVA-Med + LoRA 80.65 82.82 33.37 66.54 31.92 90.95 83.29 90.65
Greedy 81.12 85.07 31.88 68.50 33.90 91.86 83.93 90.73

Beam (Sutskever et al., 2014) 81.32 86.76 32.55 68.90 33.60 91.92 84.06 90.58
Nucleus (Holtzman et al., 2020) 80.18 85.35 31.34 68.50 30.14 90.92 83.41 90.05

VCD (Leng et al., 2024) 79.58 84.23 32.96 67.72 30.20 90.86 83.93 90.73
DoLa (Chuang et al., 2023) 81.84 86.48 31.94 68.50 34.00 91.86 84.06 90.69

OPERA (Huang et al., 2024) 81.25 86.48 33.18 68.90 33.64 91.80 84.06 90.42
AVISC (Woo et al., 2024) 80.15 85.63 33.66 69.29 32.37 90.62 84.06 90.54
M3ID (Favero et al., 2024) 79.83 84.79 31.40 68.90 32.47 91.15 84.95 90.73

DAMRO (Gong et al., 2024) 82.19 83.66 32.41 66.14 32.27 90.12 84.69 90.08
PAI (Liu et al., 2025) 81.02 86.76 32.14 68.11 33.46 91.77 84.31 90.95

A3TUNE (ours) 82.36 86.76 36.97 70.87 34.61 92.19 85.97 91.98

5.1 Settings

Datasets. We evaluate our method on two key
tasks in medical application of Med-LVLMs: med-
ical VQA and medical report generation. For
medical VQA, we use diverse datasets includ-
ing SLAKE (Liu et al., 2021), VQA-RAD (Lau
et al., 2018), PathVQA (He et al., 2020), IU-
Xray (Demner-Fushman et al., 2016) and Omn-
iMedVQA (Hu et al., 2024). For medical report
generation, we use MIMIC-CXR (Johnson et al.,
2019) and IU-Xray. Details of dataset processing
and settings are provided in Appendix A.
Baselines. We compare our approach with widely
used hallucination mitigation methods with or
without fine-tuning, including decoding strategies
and contrastive decoding techniques2. The de-
coding baselines include Greedy decoding, Nu-
cleus sampling (Holtzman et al., 2020), Beam
search (Sutskever et al., 2014). For contrastive
decoding techniques, we specifically compare
with: VCD (Leng et al., 2024), OPERA (Huang
et al., 2024), DoLa (Chuang et al., 2023),
AVISC (Woo et al., 2024), M3ID (Favero et al.,
2024), DAMRO (Gong et al., 2024) and PAI (Liu
et al., 2025). Additionally, we include ControlM-
LLM (Wu et al., 2024) as a baseline only when the
ground truth RoIs are available. Detailed settings

2We do not compare with the methods requiring tailored
de-hallucination training pipelines such as CoMT (Jiang et al.,
2024) and HELPD (Yuan et al., 2024).

Table 2: Comparison of Visual Attention Distribution.

Method Metrics
Coverage ↑ Intensity ↑

LLaVA-Med 0.122 0.076
LLaVA-Med + LoRA 0.132 0.076

A3TUNE 0.275 0.147

of baselines and implementation are in Appendix B
and Appendix C, respectively.

Metrics. (1) Metrics for Performance Evalu-
ation. For medical VQA, we report Accuracy
for close-ended questions and Recall for open-
ended questions, following LLaVA-Med (Li et al.,
2024). For medical report generation, we use
standard metrics for generation tasks, including
BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2019). Additionally, we
report domain-specific metrics designed for medi-
cal report generation: CheXbert (Smit et al., 2020),
RadGraph (Jain et al., 2021) and RaTEScore (Zhao
et al., 2024). More details of these metrics are pro-
vided in Appendix D.1. (2) Metrics for Attention
Maps Evaluation. For datasets with ground truth
RoIs (e.g., SLAKE), we design two metrics to eval-
uate the attention distribution on images: (1) Cov-
erage Score (Coverage), which measures spatial
alignment, and (2) Intensity Alignment (Intensity),
which assesses the degree of focus. Details of these
two metrics are in Appendix D.2.



Table 3: Performance on report generation benchmarks using LLaVA-Med fine-tuned with LoRA.

Dataset Metric Method
LLaVA-Med

+ LoRA
Greedy Beam Nucleus VCD DoLa OPERA AVISC M3ID DAMRO PAI A3TUNE

IU-Xray

BLEU 7.70 8.86 9.34 7.80 8.83 8.93 8.27 8.52 8.63 7.29 8.87 11.05
ROUGE-L 26.15 27.09 27.56 26.72 27.36 26.94 27.14 26.97 27.79 25.61 26.74 30.00
METEOR 29.50 26.01 26.44 30.33 31.77 25.74 29.66 31.14 31.65 30.03 25.99 34.26
BERTScore 88.36 88.50 88.52 88.28 88.30 88.42 88.41 88.47 88.52 88.14 88.39 89.05
CheXbert 53.81 52.55 52.88 52.73 51.86 52.27 56.26 53.33 54.45 51.50 52.45 57.19
RadGraph 20.44 20.76 21.29 20.85 22.02 20.63 21.87 22.27 22.22 20.75 20.48 24.24
RaTEScore 58.37 58.24 58.77 57.84 58.93 58.10 58.73 59.21 59.37 59.19 57.81 63.03

MIMIC-
CXR

BLEU 3.28 4.07 3.39 3.29 3.53 3.99 3.14 3.34 3.62 3.37 4.32 4.56
ROUGE-L 16.54 18.75 17.25 16.14 16.58 18.62 15.52 16.79 16.67 15.75 18.64 19.03
METEOR 17.90 18.81 17.36 17.98 18.68 18.68 14.70 18.29 18.22 17.03 19.78 20.23
BERTScore 85.57 86.14 85.78 85.42 85.57 86.14 84.75 85.59 85.58 85.27 86.10 86.17
CheXbert 22.14 24.24 23.05 21.76 23.38 25.14 20.07 22.74 22.95 22.76 25.78 24.93
RadGraph 9.43 10.73 9.78 9.20 9.93 10.75 7.74 9.52 9.93 9.40 11.17 11.55
RaTEScore 40.00 41.06 38.59 39.26 40.95 40.73 35.72 40.08 39.87 39.62 41.03 42.73

5.2 Medical VQA Results

The performance of A3TUNE on diverse medical
VQA benchmarks is presented in Table 1, indicat-
ing A3TUNE maintains its superiority across all
datasets and its effectiveness across diverse med-
ical images and VQA tasks. In addition, we also
analyze visual attention distribution on the test set
of SLAKE with annotated RoIs (Table 2). Since the
baselines in Table 1 improve the model only on the
decoding side without modifying attentions, their
attention distributions remain similar to the base
model, LLaVA-Med and we compare only against
LLaVA-Med and LLaVA-Med + LoRA. We ob-
serve that A3TUNE achieves the highest scores
in both coverage (0.275) and intensity (0.147),
outperforming baselines. These results highlight
A3TUNE’s ability to focus more effectively on RoIs
in medical images, explaining its better VQA per-
formance and improved interpretability.

5.3 Medical Report Generation Results

Table 3 presents the evaluation of A3TUNE on med-
ical report generation tasks using traditional met-
rics (e.g., BLEU, ROUGE-L) and domain-specific
metrics such as RaTEScore. The baselines are
applied on fine-tuned LLaVA-Med using LoRA,
as the original LLaVA-Med performs significantly
worse on this task, as shown in the full results in Ap-
pendix E. Similar to the results in Table 1, A3TUNE

outperforms all baselines across both datasets and
almost all metrics.

5.4 Module Effectiveness Analysis

5.4.1 Weak Labels Generation
(1) Quality of Weak Labels. This experiment eval-
uates the upper bound of A3TUNE’s performance
by upgrading weak labels to high-quality ground
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Figure 4: Effectiveness analysis of RoIs labels. Base is
the base model, Control means adding ControlMLLM
to align attention maps with ground truth labels, Weak
uses weak labels, and GT uses ground truth labels.

Pe
rf

or
m

an
ce

Number of selected attention heads -- R  Number of weak labels -- K
320 64 128 256 512 10240 2 4 6 8

86

84

82

80

86

84

82

(b) (a)

Figure 5: Analysis of (a) the number of selected atten-
tion heads R in A3TUNE and (b) the number of weak
labels K, evaluated on the SLAKE dataset.

truth labels (GT). We use a subset of SLAKE with
RoIs annotations, including 992 training samples
and 206 test samples and take ControlMLLM (Wu
et al., 2024) as the baseline.

Figure 4 (B.2) shows that replacing weak labels
(Weak) with high-quality labels (GT in A3TUNE

further improves performance, validating the rea-
sonableness of using weak labels. Additionally,
while ControlMLLM (Control) improves perfor-
mance in LLaVA-Med (Figure 4 (A)), it negatively
impacts fine-tuned LLaVA-Med+LoRA in Figure 4
(B.1), whereas A3TUNE achieve improved results.
These results highlight both the effectiveness of
A3TUNE and its potential for further improvement
when ground truth RoI labels are available.
(2) Selection of Weak Labels. To obtain prompt-
aware weak labels, we select K segments that are
most similar to the text prompt. In this experiment,
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Figure 6: Case study for fine-grained effectiveness analysis. The red box in the first column (not provided as input
to the model) highlights the RoI that LLaVA-Med should focus on. The second column shows weak segmentation
labels, with red bounding boxes and green inner segments generated using the method described in Section 4.1.
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Figure 7: Analysis of (a) the contribution of different
modules in A3MOE, and (b) the number of experts in
K-MoE within A3MOE. In (a), each module’s impact is
evaluated by removing it from A3TUNE, denoted "w/o".

we analyze the impact of different values of K
on model performance using the SLAKE dataset.
As shown in Figure 5 (a) increasing K initially
improves performance by adding more relevant
labels. However, performance peaks at K = 4,
after which additional segments introduce noise,
leading to a performance decline.

5.4.2 Selection of Attention Heads
In A3TUNE, we select R most “visually-critical”
attention heads to balance model stability and ef-
fectiveness of A3TUNE. As shown in Figure 5 (b),
disabling attention tuning (R = 0) results in no-
ticeably lower performance. Performance peaks
at R = 128, which strikes a balance between the
strength of attention tuning and stability. Thus, we
set R = 128 in our experiments.

5.4.3 A3MOE Design
(1) Ablation Study of A3MOE. Figure 7 (a)
shows the impact of removing key components
of A3MOE from A3TUNE: Q-MoE, K-MoE and
A3MOE as a whole. The removal of each module
leads to a noticeable performance drop, particularly
for K-MoE. This highlights the importance of K-
MoE, which is designed for fine-grained attention

tuning at the visual token level and is critical for
datasets with diverse image modalities like SLAKE.
Additionally, the removal of the entire A3MOE
leads to a further decline in performance. How-
ever, even with these components removed, the
performance of A3TUNE remains above the base-
line LoRA tuning on LLaVA-Med, demonstrating
the effectiveness of the overall framework.
(2) The Number of Selected Experts in K-MoE.
As shown in Figure 7(b), performance peaks at
B = 3. Beyond this point, additional experts lead
to diminishing and unstable returns, likely due to
saturation and increased interference among ex-
perts handling different visual tokens.

5.5 Case Study

Figure 6 presents a case study for three image
modalities. The attention map visualizations
demonstrate that our method effectively redirects
the model’s focus to relevant regions, mitigating
hallucination issues compared to baselines. In ad-
dition, we provide fine-grained effectiveness evalu-
ation across Chest X-ray, Abdomen CT, and Brain
MRI images from SLAKE in Appendix F Table 10.

5.6 Generalization to Other Medical LVLMs

We further evaluate our approach on medical VQA
(Table 4) and report generation (Table 5) using a
more recent and stronger Med-LVLM, HuatuoGPT-
Vision-7B (Chen et al., 2024b). As shown in the
results, transferring A3TUNE to this new back-
bone consistently achieves the best performance
across all metrics on IU-Xray for report generation
and SLAKE for VQA. These results demonstrate
the flexibility and strong generalization ability of
A3TUNE, along with its capacity to further enhance



Table 4: Performance on SLAKE VQA benchmark using HuatuoGPT-Vision-7B (denoted as HuatuoGPT-V). We
report both open-ended and close-ended performance.

Model Metric Method
Base Greedy Beam Nucleus VCD DoLa OPERA AVISC M3ID DAMRO PAI A3Tune

HuatuoGPT-V
+ LoRA

Open-ended 85.46 84.89 85.62 85.57 85.57 85.19 85.07 84.42 85.41 85.57 83.85 86.77
Close-ended 91.27 89.86 89.86 90.99 90.99 90.42 89.86 90.70 91.27 90.99 90.99 91.55

Table 5: Performance on report generation benchmarks using HuatuoGPT-Vision-7B fine-tuned with LoRA.

Dataset Metric Method
HuatuoGPT-V

+ LoRA
Greedy Beam Nucleus VCD DoLa OPERA AVISC M3ID DAMRO PAI A3TUNE

IU-Xray

BLEU 8.65 9.34 10.21 8.19 9.10 9.03 10.01 7.47 8.35 9.10 6.92 10.52
ROUGE-L 27.34 28.17 28.64 26.28 27.80 27.50 28.57 24.78 27.05 27.80 24.36 28.85
METEOR 31.48 31.76 34.23 30.72 32.13 31.24 34.10 30.88 32.17 32.13 30.84 36.30
BERTScore 88.35 88.53 88.60 88.19 88.36 88.39 88.51 87.77 88.19 88.36 87.44 88.67
CheXbert 54.21 55.16 55.84 53.86 54.34 53.89 55.01 52.11 53.78 54.34 50.09 56.27
RadGraph 21.35 21.86 22.47 20.17 21.65 21.04 22.59 19.71 21.19 21.65 18.26 23.51
RaTEScore 58.21 58.66 59.78 58.29 58.29 57.84 59.33 56.49 57.86 58.29 55.16 60.51

performance when built upon more capable back-
bone models.

6 Conclusion

In this work, we present A3TUNE, a novel fine-
tuning framework designed to enhance the visual
grounding capabilities of Med-LVLMs. By lever-
aging prompt-aware weak labels and integrating
a A3MOE design, A3TUNE dynamically aligns
attention distributions to RoIs across diverse medi-
cal tasks and datasets, without requiring inference-
time adjustments. Extensive experiments high-
lights A3TUNE as a promising direction for en-
hancing Med-LVLMs in downstream applications.

Limitations

While the use of weak labels in A3TUNE demon-
strates its effectiveness, it also introduces noise that
can limit performance. In some cases, the model
can only focus on generally correct regions, lack-
ing accuracy but providing directions for future
research. As shown in Section 5.4.1, using high-
quality labels leads to further performance improve-
ments. Additionally, our framework is currently
restricted to fine-tuning for downstream tasks, lim-
iting its broader applicability. Furthermore, the
metrics used to evaluate visual attention distribu-
tion are constrained to patch-level granularity due
to the inherent design of Med-LVLMs, rather than
achieving pixel-level precision.
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For IU-Xray and OmniVQA in medical VQA task,
we utilize the preprocessed datasets provided by
the CARES benchmark (Xia et al., 2024), splitting
each dataset into training and test sets with a 7:3 ra-
tio. For the MIMIC-CXR dataset used in the report
generation task, we randomly sample 2,000 image-
report pairs from the preprocessed MIMIC-CXR-
JPG dataset (Johnson et al., 2019) for the training
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Task Dataset Training Test

Medical
VQA

SLAKE 4,919 1,061
VQA-RAD 1,797 451
PathVQA 19,755 6,761
IU-Xray 1,789 784

OmniMedVQA 6,155 2,642
Report

Generation
IU-Xray 2,069 590

MIMIC-CXR 1,902 441

Table 6: Dataset statistics for the Medical VQA and
Report Generation tasks.

set and 500 pairs for the test set. We extract the
“Findings” and “Impression” sections from each
report in sampled MIMIC-CXR reports, filtering
out those with an extremely low word count. The
statistics of those datasets are shown in Table 6.

B Implementation Details of Baselines

Generally, we follow the recommended settings
for all baselines while making necessary adjust-
ments to adapt them to Med-LVLMs. The detailed
settings are listed as follows:

• Beam Search (Sutskever et al., 2014): The
number of beams is set to 5.

• Nucleus Sampling (Holtzman et al., 2020):
The top-p value for sampling is 0.9.

• VCD (Leng et al., 2024): The contrastive
decoding parameters are set to α = 1 and
β = 0.1. Diffusion noise is added to images
using 500 steps.

• DoLa (Chuang et al., 2023): The mature layer
is set to 32, while the early candidate mature
layers are [0, 2, 4, 6, 8, 10, 12, 14].

• OPERA (Huang et al., 2024): The number
of beams is set to 5, with a scale factor of 50,
threshold of 15, and num-attn-candidates = 5.
The penalty weight is set to 1. Notably, for
LLaVA-Med-1.5 in the report generation task,
the scale factor is set to 25 and the threshold
is adjusted to 25, as the default values result
in nonsensical decoded content.

• AVISC (Woo et al., 2024): We select the top-
10 outlier image tokens to construct the nega-
tive decoding object. The contrastive decod-
ing parameters are set to α = 1 and β = 0.1.

• M3ID (Favero et al., 2024): The contrastive
decoding parameters are set as follows: λ =

Table 7: Fine-tuning epochs and λ values for different
datasets.

Dataset Epochs λ

Medical VQA

SLAKE 6 0.1
VQA-RAD 9 0.06
PathVQA 3 0.02
IU-Xray 6 0.12
OmniMedVQA 3 0.03

Medical Report Generation

IU-Xray 12 0.08
MIMIC-CXR 12 0.05

0.02 and γt = exp(−λ · t), where t denotes
the current decoding step.

• DAMRO (Gong et al., 2024): We select the
top-10 tokens with the highest attention to the
[CLS] token in the visual encoder as outlier
tokens. The contrastive decoding parameters
are set to α = 0.5 and β = 0.1.

• PAI (Liu et al., 2025): In the inference inter-
vention, the start layer and end layer are set to
2 and 32, respectively, γ = 1.1 and α = 0.2.

• ControlMLLM (Wu et al., 2024): In inference-
time tuning, it is configured with β =
0.5, α = 400, and a learning rate of 4. For
LLaVA-Med-1.5, the same parameters are ap-
plied but with a reduced learning rate of 1.

C Implementation Details

C.1 Hyperparameter setting

All fine-tuning tasks are performed using the same
seed for LoRA initialization. The LoRA rank is set
to 64 and the rank of each expert in A3MOE is set
to 16, with a learning rate of 2e-4. For A3MOE,
the default number of experts in K-MoE Ok is 8,
while the default number of experts in Q-MoE Oq

is 4. For example, we use these settings in all
report generation tasks for Chest X-rays. However,
for large datasets with diverse image modalities
such as SLAKE, PathVQA and OmniMedVQA,
the number of experts is increased to 16 and 8,
respectively. Some other key hyperparameters are:
K = 4, R = 128, B = 3 when Ok = 16 and
B = 2 when Ok = 8.



Table 8: Full results of report generation on IU-Xray, based on LLaVA-Med and the LoRA fine-tuned LLaVA-Med.

Model Method IU-Xray
BLEU ROUGE-L METEOR BERTScore CheXbert RadGraph RaTEScore

LLaVA-Med

LLaVA-Med 1.30 11.55 16.09 84.12 35.21 6.46 42.32
Greedy 1.21 13.97 19.12 84.61 35.82 6.74 42.32
Beam 1.19 13.42 19.49 84.24 39.41 8.69 44.56

Nucleus 1.33 11.15 16.28 83.89 32.39 6.39 41.39
VCD 1.19 10.26 15.46 83.49 33.25 5.67 41.20
DoLa 1.20 13.93 19.14 84.60 35.61 6.74 42.31

OPERA 0.89 8.46 13.90 82.52 33.19 3.48 39.19
AVISC 1.16 11.12 17.34 83.86 30.99 5.08 43.30
M3ID 1.40 12.01 16.48 84.07 34.32 6.71 42.02

DAMRO 1.23 10.69 16.68 83.72 30.21 5.63 43.62
PAI 1.14 12.90 18.46 84.33 38.64 6.96 42.92

LLaVA-Med
+ LoRA

LLaVA-Med + LoRA 7.70 26.15 29.50 88.36 53.81 20.44 58.37
Greedy 8.86 27.09 26.01 88.50 52.55 20.76 58.24
Beam 9.34 27.56 26.44 88.52 52.88 21.29 58.77

Nucleus 7.80 26.72 30.33 88.28 52.73 20.85 57.84
VCD 8.83 27.36 31.77 88.30 51.86 22.02 58.93
DoLa 8.93 26.94 25.74 88.42 52.27 20.63 58.10

OPERA 8.27 27.14 29.66 88.41 56.26 21.87 58.73
AVISC 8.52 26.97 31.14 88.47 53.33 22.27 59.21
M3ID 8.63 27.79 31.65 88.52 54.45 22.22 59.37

DAMRO 7.29 25.61 30.03 88.14 51.50 20.75 59.19
PAI 8.87 26.74 25.99 88.39 52.45 20.48 57.81

A3TUNE (ours) 11.05 30.00 34.26 89.05 57.19 24.24 63.03
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Figure 8: Analysis of the value of λ in A3TUNE on the
SLAKE dataset.

C.2 λ Selection

In our final loss in Eq. (12), we use a key hyperpa-
rameter λ to balance the two loss terms. Here, we
conduct an analysis to select the optimal value of
λ. Figure 8, illustrate the impact of λ, which con-
trols the strength of attention alignment tuning. We
can observe that on SLAKE, performance peaks at
λ = 0.1. Beyond this point, the performance de-
clines due to over-alignment and extreme attention
distributions. Notably, λ varies with the scale of
datasets and the training epoches, and the values of
λ and fine-tuning epoches for all the datasets are as
shown in Table 7.

All the experiments are conducted using four
A6000 GPUs.

D Metrics

D.1 Metrics for Report Generation

We evaluate model performance using commonly
used metrics for generation tasks. These include
BERTScore (Zhang et al., 2019), which measures
the similarity between the embeddings of predicted
and reference texts, and METEOR (Banerjee and
Lavie, 2005), which evaluates alignment between
generated answers and reference texts, account-
ing for synonyms and stemming. Additionally,
we employ ROUGE-L (Lin, 2004), which mea-
sures n-gram overlap and the longest common
subsequence, and BLEU (Papineni et al., 2002),
which calculates n-gram precision in the predicted
text relative to the reference, focusing on exact
matches. In addition, we include the following
domain-specific metrics designed for medical re-
port generation:

• CheXbert (Smit et al., 2020) is an automatic
labeler that extracts pathology indicators from
radiology reports. We follow (Yu et al.,
2023) to calculate the CheXbert vector simi-
larity that measures the cosine similarity be-
tween pathology indicator vectors derived
from ground truth and model-generated re-
ports.

• RadGraph (Jain et al., 2021) is a tool that
extracts entity and relation from radiology
reports. We use RadGraph to specifically



Table 9: Full results of report generation on MIMIC-CXR, based on LLaVA-Med and the LoRA fine-tuned LLaVA-
Med.

Model Method MIMIC-CXR
BLEU ROUGE-L METEOR BERTScore CheXbert RadGraph RaTEScore

LLaVA-Med

LLaVA-Med 1.38 12.28 13.20 84.24 15.45 3.14 32.91
Greedy 0.42 9.23 6.77 83.94 14.23 1.42 29.81
Beam 1.20 13.06 13.00 83.25 10.90 3.16 34.30

Nucleus 1.22 12.49 11.99 83.65 15.79 3.31 34.17
VCD 1.12 12.21 11.53 83.53 14.25 2.83 34.06
DoLa 0.39 9.13 6.54 83.96 14.26 1.38 29.59

OPERA 1.06 12.90 11.93 83.11 12.90 2.80 36.12
AVISC 1.20 11.90 13.08 83.20 13.09 2.62 35.22
M3ID 1.10 12.13 11.47 83.69 15.08 2.77 33.68

DAMRO 1.27 12.40 12.84 83.40 13.76 3.36 35.71
PAI 0.48 9.74 7.22 83.81 14.39 1.45 30.57

LLaVA-Med
+ LoRA

LLaVA-Med + LoRA 3.28 16.54 17.90 85.57 22.14 9.43 40.00
Greedy 4.07 18.75 18.81 86.14 24.24 10.73 41.06
Beam 3.39 17.25 17.36 85.78 23.05 9.78 38.59

Nucleus 3.29 16.14 17.98 85.42 21.76 9.20 39.26
VCD 3.53 16.58 18.68 85.57 23.38 9.93 40.95
DoLa 3.99 18.62 18.68 86.14 25.14 10.75 40.73

OPERA 3.14 15.52 14.70 84.75 20.07 7.74 35.72
AVISC 3.34 16.79 18.29 85.59 22.74 9.52 40.08
M3ID 3.62 16.67 18.22 85.58 22.95 9.93 39.87

DAMRO 3.37 15.75 17.03 85.27 22.76 9.40 39.62
PAI 4.32 18.64 19.78 86.10 25.78 11.17 41.03

A3TUNE (ours) 4.56 19.03 20.23 86.17 24.93 11.55 42.73

indicate RadGraph F1, which measures the
overlap of clinical entities and their rela-
tions extracted from ground truth and model-
generated reports.

• RaTEScore (Zhao et al., 2024) is a recently
proposed metric that prioritizes crucial med-
ical entities, including diagnostic outcomes
and anatomical details. This metric is robust
to complex medical synonyms and sensitive
to negation expressions, aligning more closely
with human judgment compared to existing
metrics.

D.2 Metrics for Attention Distribution
(a) Coverage Score. The Coverage Score measures
the proportion of the ground truth region that is
covered by the attention map. Let B denote the
binary mask of the ground truth segment (where
B(i, j) = 1 for pixels belonging to the ground
truth and B(i, j) = 0 otherwise) and M denote the
attention map output by the model. The score is
defined as:

Coverage =

∑
i,j B(i, j) ·Mτ (i, j)∑

i,j B(i, j)
,

where Mτ is the thresholded attention map, i.e.,
Mτ (i, j) = 1 if M(i, j) ≥ τ , and Mτ (i, j) = 0
otherwise. This metric quantifies how well the
attention aligns spatially with the ground truth. In
our experiments, we set τ as 0.15.

(b) Intensity Alignment. The Intensity Align-
ment metric evaluates the average attention inten-
sity within the ground truth region. It is computed
as:

Intensity Alignment =

∑
i,j B(i, j) ·M(i, j)∑

i,j B(i, j)

This score reflects the degree to which the model
focuses its attention on the ground truth segment,
considering the intensity values of the attention
map.

Table 10: Results on different medical image modalities.

Method Chest X-ray Abdomen CT Brain MRI
Open Closed Open Closed Open Closed

LLaVA-Med + LoRA 76.96 89.08 79.67 81.15 79.15 79.37
Greedy 79.53 89.92 81.50 83.61 80.57 82.54
Beam 79.83 89.92 81.76 84.43 78.90 84.12

Nucleus 80.95 87.40 79.49 79.51 79.72 80.95
DoLa 78.53 89.92 81.50 83.61 79.89 80.95
VCD 81.39 86.55 80.54 80.33 79.62 69.84
M3ID 79.54 85.71 76.70 80.33 80.57 73.01
AVISC 80.52 87.40 81.41 78.69 80.49 85.71
OPERA 80.19 89.92 81.15 83.61 77.55 82.54
DAMRO 79.23 88.24 80.19 83.61 75.60 80.95

PAI 79.78 89.92 80.45 81.15 81.95 80.95
A3TUNE (ours) 82.21 89.92 83.33 84.43 82.41 87.30

E Full Results on Report Generation
Benchmarks

We present the comparison results of report genera-
tion using LLaVA-Med in Table 8 (IU-Xray) and
Table 9 (MIMIC-CXR). These tables include the
original results of baselines applied to LLaVA-Med



Table 11: Results on report generation benchmarks, based on LLaVA-Med-1.5.

Model Method IU-Xray
BLEU ROUGE-L METEOR BERTScore CheXbert RadGraph RaTEScore

LLaVA-Med-1.5

LLaVA-Med-1.5 1.40 12.41 16.30 84.55 38.20 7.77 41.15
Greedy 1.04 12.15 9.87 85.43 38.04 5.43 34.97
Beam 1.09 11.17 19.59 83.43 40.13 9.42 48.64

Nucleus 1.44 12.10 15.60 81.45 38.04 6.51 40.41
VCD 1.42 12.29 15.72 84.54 36.57 6.49 39.93
DoLa 0.99 12.15 9.36 85.64 38.22 5.40 34.93

OPERA 1.13 11.49 14.63 83.76 37.38 1.41 35.96
AVISC 1.18 11.32 16.66 83.76 35.83 6.63 40.36
M3ID 1.33 12.31 16.31 84.45 37.54 6.42 40.41

DAMRO 1.27 11.56 16.42 84.08 35.60 6.80 40.08
PAI 1.11 12.05 10.99 85.03 37.56 5.21 34.83

LLaVA-Med-1.5
+ LoRA

LLaVA-Med-1.5 + LoRA 8.04 26.52 30.37 88.24 51.32 20.35 56.97
Greedy 9.36 27.57 27.91 88.55 52.44 21.28 58.61
Beam 9.54 28.41 35.40 88.45 53.70 22.43 59.65

Nucleus 7.80 26.72 30.33 88.28 52.73 20.85 57.84
VCD 8.83 27.36 31.77 88.30 51.86 22.02 58.93
DoLa 8.93 26.94 25.74 88.42 52.27 20.63 58.10

OPERA 9.23 27.48 34.17 88.17 51.65 21.37 57.89
AVISC 5.57 21.71 26.84 87.34 47.32 16.87 53.66
M3ID 8.44 26.21 30.86 88.20 51.13 20.77 59.37

DAMRO 8.21 25.77 30.58 88.09 50.10 22.33 57.31
PAI 8.52 26.97 28.63 88.42 52.22 20.99 58.21

A3TUNE (ours) 10.51 28.76 35.74 88.51 53.88 23.10 59.66

Table 12: Results of Report Generation on MIMIC-CXR

Model Method MIMIC-CXR
BLEU ROUGE-L METEOR BERTScore CheXbert RadGraph RaTEScore

LLaVA-Med-1.5

LLaVA-Med-1.5 0.98 10.73 10.95 82.29 14.11 1.83 31.90
Greedy 0.93 10.90 9.45 83.09 14.11 1.09 28.07
Beam 1.13 10.95 13.01 82.34 12.51 1.87 32.86

Nucleus 0.96 10.55 10.70 78.53 14.11 1.64 31.54
VCD 1.00 10.93 11.31 83.11 13.46 1.97 31.75
DoLa 0.65 9.88 7.83 83.47 14.07 1.09 28.07

OPERA 1.09 11.51 12.22 82.69 13.00 0.52 27.77
AVISC 1.16 11.14 12.30 82.61 14.11 1.97 32.20
M3ID 1.06 11.50 11.54 83.15 13.98 2.24 32.74

DAMRO 1.14 11.01 12.35 82.80 13.73 2.26 32.18
PAI 1.12 11.67 10.63 82.80 14.05 0.98 28.07

LLaVA-Med-1.5
+ LoRA

LLaVA-Med-1.5 + LoRA 3.50 16.38 18.95 85.56 21.45 9.54 40.45
Greedy 3.50 16.49 18.71 85.54 23.43 9.63 40.49
Beam 3.66 16.85 20.68 85.51 25.00 9.91 41.46

Nucleus 3.48 16.35 18.93 85.50 22.21 9.27 40.08
VCD 3.74 16.88 19.03 85.56 22.98 9.56 40.93
DoLa 3.48 16.45 18.66 85.54 23.34 9.52 40.49

OPERA 3.56 16.77 20.10 85.46 24.31 9.81 41.33
AVISC 3.31 16.36 18.64 85.48 23.31 9.02 40.36
M3ID 3.14 16.13 18.52 85.39 22.42 9.15 39.74

DAMRO 3.42 16.63 18.87 85.48 23.30 9.46 40.80
PAI 3.63 16.65 18.61 85.60 24.51 9.60 40.49

A3TUNE (ours) 4.22 18.02 20.69 85.75 25.37 10.52 42.15
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Figure 9: VQA Types where A3TUNE outperforms
LLaVA-Med + LoRA across three image modalities.

without fine-tuning, where the model performs sig-
nificantly worse on report generation. For example,
in Table 8, the best-performing baseline, M3ID,
achieves a BLEU score of 1.40, which is much
lower than fine-tuned LLaVA-Med baselines. This
highlights the challenge of generating professional
medical reports without fine-tuning. As discussed
in the experiments section, A3TUNE consistently
achieves the best performance, outperforming all
baselines by a large margin.

F Fine-grained Effectiveness Analysis

In this experiment, we conduct fine-grained anal-
yses to evaluate the effectiveness of our proposed



Generated 
answer: “The 
picture includes a 
case of 
glioblastoma, 
which is a type of 
brain tumor.”

Generated answer: “The 
picture includes a case of 
Creutzfeldt-Jakob disease 
(CJD), which is a rare and 
rapidly progressive 
neurodegenerative 
disorder.”

Prompt: What disease is included in the medical image?

A.2 LLaVA-Med-1.5 A.3 LLaVA-Med-1.5 + 
ControlMLLM 

A.1 Input Image 

Ground truth: 
“A brain tumor 
in the upper 
left region.”

Case(A)

Generated 
answer: “Yes, 
there appears to 
be a liver abscess 
in the image.”

Generated answer: 
“According to the image, 
the liver appears to be 
normal.”

Prompt: Is there any abnormality on the liver?

B.2 LLaVA-Med-1.5 B.3 LLaVA-Med-1.5 + 
ControlMLLM 

B.1 Input Image 

Ground truth: 
“A liver tumor 
in the upper 
left region.”

Case(B)

Figure 10: Case study on LLaVA-Med-1.5. The red box in the Input Image (not provided as input to the model)
highlights the RoI that model should focus on. Red texts and green texts indicate wrong answers and correct answers,
respectively.

method across different medical image modalities.
Specifically, we examine how our approach im-
proves model performance on Chest X-ray, Ab-
domen CT, and Brain MRI images from SLAKE.
As shown in Table 10, our method outperforms
all baselines, particularly on Brain MRI. These re-
sults demonstrates the effectiveness of A3TUNE

across diverse medical images and its generaliza-
tion ability in medical applications. To explain this
improvement, we also include case studies with
attention map visualizations for each modality in
Section 5.5.

Furthermore, we analyze the VQA types where
our method outperforms fine-tuned LLaVA-Med
with LoRA across the three image modalities. As
shown in Figure 9, our approach improves the
model’s performance in three key areas sensitive to
image information:

• General Radiology Knowledge: Understand-
ing medical modality types and their features.

• Anatomical Structures: Recognizing features
of key anatomical structures, such as organ
count, location.

• Abnormalities: Identifying and diagnosing ab-
normalities based on features like location and
color.

These improvements highlight the effectiveness
of attention tuning in handling VQA types relying
on accurate visual information and interaction.

G Analysis on LLaVA-Med-1.5

G.1 Attention Biases and Hallucination Issues
in LLaVA-Med-1.5

The attention biases we address are not unique to
LLaVA-Med but are prevalent across Med-LVLMs.
For instance, we include cases from LLaVA-Med-
1.5 in this section. Although LLaVA-Med-1.5 is an
enhanced version of LLaVA-Med, with improved
training data and an increased number of visual
tokens (from 256 to 576), the attention biases and
hallucination issues persist.

In Figure 10, we visualize the attention biases
and corresponding hallucination issues in LLaVA-
Med-1.5. As shown, the model often fails to fo-
cus on the correct RoIs and generates hallucinated
outputs. Even with attention tuning via ControlM-
LLM, hallucinations persist. For example, in Case
(B.3), while the model identifies an abnormality in
the liver, it incorrectly classifies it as a liver abscess
instead of liver cancer.

These attention biases are common issues in
Med-LVLMs, underscoring the need for contin-
ued research on emergent Med-LVLMs to mitigate
such challenges effectively.

G.2 Experiment Results on LLaVA-Med-1.5

Similar to the LLaVA-Med experiments in Sec-
tion 5.3, Table 11 and Table 12 show that A3TUNE

outperforms all baselines across almost all met-
rics on both IU-Xray and MIMIC-CXR, excelling
in both language quality and clinical accuracy.
These results underscore A3TUNE’ effectiveness in



medical applications across diverse Med-LVLMs,
demonstrating its strong generalization ability.


